

Product Information Sheet for NR-28977

Enterococcus faecium, Strain E1039

Catalog No. NR-28977

For research use only. Not for human use.

Contributor:

Willem van Schaik, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands

Manufacturer:

BEI Resources

Product Description:

Bacteria Classification: Enterococcaceae, Enterococcus

Species: Enterococcus faecium

Strain: E1039

Original Source: Enterococcus faecium (E. faecium) strain E1039 is a non-infectious fecal isolate collected from a normal individual in the Netherlands in 1998 during a community surveillance program.¹

<u>Comments</u>: *E. faecium*, strain E1039 contains a mutation that introduces a premature stop codon that inactivates the *acm* gene and lacks the *hyl* gene.¹ Strain E1039 is classified as DNA sequence type 94 based on multi-locus sequence typing of seven housekeeping genes.¹ The complete genome of *E. faecium*, strain E1039 has been sequenced (GenBank: ACOS01000000).

E. faecium is a Gram-positive, facultative anaerobic coccus that is a commensal inhabitant of the gastrointestinal tract of both humans and animals.^{1,3,4} *E. faecium* is an emerging and challenging nosocomial pathogen due to its inherent hardiness and ability to develop antibiotic resistance.^{1,4} Its large open pan-genome allows for horizontal gene transfer between *E. faecium* and other pathogenic and non-pathogenic bacteria to adapt to changing environments.^{1,5} The large majority of strains isolated from nosocomial infections have been classified as Clonal Complex 17 (CC17), with a distinct genetic lineage characterized by ampicillin resistance and a pathogenicity island carrying the *esp* gene, which is known to contribute virulence in an animal model.^{1,5,6} Two other virulence genes, *hyl* and *acm*, have been identified.¹

Material Provided:

Each vial contains approximately 0.5 mL of bacterial culture in 0.5X Tryptic Soy broth supplemented with 10% glycerol.

<u>Note</u>: If homogeneity is required for your intended use, please purify prior to initiating work.

Packaging/Storage:

NR-28977 was packaged aseptically, in screw-capped plastic cryovials. The product is provided frozen and should be stored at -60°C or colder immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze-thaw cycles should be avoided.

Growth Conditions:

<u>Note</u>: Specific growth conditions are reported on the Certificate of Analysis for each lot.

<u>Media:</u>

Tryptic Soy broth or Brain Heart Infusion broth or equivalent Tryptic Soy agar or Tryptic Soy agar with 5% defibrinated sheep blood or Brain Heart Infusion agar or equivalent Incubation:

Temperature: 35 to 37°C

Atmosphere: Aerobic (with or without 5% CO₂) or anaerobic Propagation:

- 1. Keep vial frozen until ready for use, then thaw.
- 2. Transfer the entire thawed aliquot into a single tube of broth.
- Use several drops of the suspension to inoculate an agar slant and/or plate.
- 4. Incubate tube, slant and/or plate for 24 hours.

Citation:

Acknowledgment for publications should read "The following reagent was obtained through BEI Resources, NIAID, NIH: *Enterococcus faecium*, Strain E1039, NR-28977."

Biosafety Level: 2

Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following publication: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, and National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories. 5th ed. Washington, DC: U.S. Government Printing Office, 2009; see www.cdc.gov/biosafety/publications/bmbl5/index.htm.

Disclaimers:

You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the misidentification or misrepresentation of products.

BEI Resources www.beiresources.org E-mail: contact@beiresources.org

Tel: 800-359-7370 Fax: 703-365-2898

Product Information Sheet for NR-28977

Use Restrictions:

This material is distributed for internal research, noncommercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale.

References:

- van Schaik, W., et al. "Pyrosequencing-Based Comparative Genome Analysis of the Nosocomial Pathogen Enterococcus faecium and Identification of a Large Transferable Pathogenicity Island." <u>BMC</u> <u>Genomics</u> 11 (2010): 239. PubMed: 20398277.
- Zhang, X., et al. "A Genetic Element Present on Megaplasmids Allows Enterococcus faecium to use Raffinose as Carbon Source." <u>Environ. Microbiol.</u> 13 (2011): 518-528. PubMed: 20946531.
- Schleifer, K. H. and R. Kilpper-Bälz. "Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov." <u>Int.</u> <u>J. Syst. Bacteriol.</u> 34 (1984): 31-34.
- Arias, C. A. and B. E. Murray. "The Rise of the Enterococcus: Beyond Vancomycin Resistance." <u>Nat.</u> <u>Rev. Microbiol.</u> 10 (2012): 266-278. PubMed: 22421879.
- Heikens, E., et al. "Identification of a Novel Genomic Island Specific to Hospital-Acquired Clonal Complex 17 Enterococcus faecium Isolates." <u>Apl. Environ. Microbiol.</u> 74 (2008): 7094-7097. PubMed: 18836023.
- Willems, R. J., et al. "Global Spread of Vancomycin-Resistant Enterococcus faecium from Distinct Nosocomial Genetic Complex." Emerg. Infect. Dis. 11 (2010): 821-828. PubMed: 15963275.

ATCC® is a trademark of the American Type Culture Collection.

BEI Resources www.beiresources.org E-mail: contact@beiresources.org
Tel: 800-359-7370

Fax: 703-365-2898