Shiga Toxin Type 2 Toxoid, Recombinant from *Escherichia coli*

Catalog No. NR-4676
This reagent is the tangible property of the U.S. Government.

For research use only. Not for human use.

Contributor and Manufacturer:
Alison D. O'Brien, Ph.D., Chairperson, and James F. Sinclair, Ph.D., Laboratory Supervisor, Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Product Description:
NR-4676 is a recombinant toxoid of Shiga toxin type 2 (Stx2) with genetic mutations in the catalytic A subunit which render the protein non-toxic. The recombinant B subunit includes a C-terminal hexa-histidine tag. The recombinant toxoid was expressed in *Escherichia coli* (*E. coli*) and purified by nickel affinity chromatography. NR-4676 has a theoretical molecular weight of approximately 33080 daltons for subunit A and 8640 daltons for subunit B. The predicted amino acid sequence of NR-4676 is shown below in Table 1 (Subunit A) and Table 2 (Subunit B).

The Shiga toxin (Stx) family refers to two types of related toxins: Shiga toxin type 1 (Stx1, Shiga-like toxin 1, or verotoxin 1) and Shiga toxin type 2 (Stx2, Shiga-like toxin 2, or verotoxin 2). Stx1 is almost identical to Shiga toxin produced by *Shigella dysenteriae* (*S. dysenteriae*) at the nucleotide sequence level, while Stx2 shares approximately 55% overall nucleotide sequence homology with Stx1 and Shiga toxin. Shiga toxins are multimeric molecules that are comprised of two polypeptide subunits, A and B. The B subunit is a pentamer that binds the toxin to glycolipids on host cell membranes and the entire toxin molecule can then enter the cell via endocytosis. Once inside the cell, the A subunit undergoes proteolytic cleavage and the reduction of an internal disulfide bond to generate Stx A1 and Stx A2. Stx A1 is an N-glycosidase that catalytically inactivates the 28S ribosomal RNA subunit to inhibit protein synthesis.

The sequences of the structural genes for Shiga toxin from *S. dysenteriae* and Shiga toxin type 2 from *E. coli* have been determined. The crystal structure of Shiga toxin from *S. dysenteriae* and Shiga toxin type 2 from *E. coli* have been solved (PDB: 1DM0 and 1R4P, respectively).

Material Provided:
Each vial of NR-4676 contains approximately 50 µg of recombinant Stx2 toxoid suspended in phosphate buffered saline. The concentration, expressed as mg per mL, is shown on the Certificate of Analysis.

Packaging/Storage:
NR-4676 was packaged aseptically in plastic cryovials. The product is provided frozen on dry ice and should be stored at -20°C or colder immediately upon arrival. Repeated freeze-thaw cycles should be avoided.

Functional Activity:
NR-4676 reacts with rabbit polyclonal antibody to Stx2 and is not cytotoxic in Vero cells.

Citation:
Acknowledgment for publications should read “The following reagent was obtained through BEI Resources, NIAID, NIH: Shiga Toxin Type 2 Toxoid, Recombinant from *Escherichia coli*, NR-4676.”

Biosafety Level:
1

Disclaimers:
You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the misidentification or misrepresentation of products.

Use Restrictions:
This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a
license before first commercial sale. This material may be subject to third party patent rights.

References:

ATCC® is a trademark of the American Type Culture Collection.

Table 1 – Predicted Protein Sequence for Stx2 Subunit A

1	REFTIDFSTQ QSYVSSLNSI RTEISTPLEH ISQGTTSVSV INHTPFGSYF
51	AVDIRGLDVY QARFDHLRLI IEQNNLS*VAG FVTATNTFY RFSDFTHISV
101	PGVTTVSMTT DSSYTLQRV AALERSGMIQI SRHSLVSSYL ALMEFSGNTM
151	TRDARAVLVR FVTVAQ*ALL* FRQIQREQFR ALSETAPVYT MTPGDVDLTL
201	NWGRISNVLIP EYRGEDGVVR GRISFNISAI LGTAVILN CHHQGARSVR
251	AVNESSQPEC QITGDRPVIK INNLWESNT AAAFLNRKSF FLYTGGK

*Mutagenized catalytic residues Y77S, E167Q and R170L. The recombinant protein does not contain signal peptide residues.

Table 2 – Predicted Protein Sequence for Stx2 Subunit B

| 1 | ADCAKKGKIEF SKYNEDDTFT VKVDGKEYWT SRWNLQPLLQ SAQLTGMTVT |
| 51 | IKSCTCESGS GFAEVQFNND HHHHHH |

Non-shiga toxin residues are underlined. The recombinant protein does not contain signal peptide residues.