Product Information Sheet for NR-2606

Peptide Array, Influenza Virus A/New Caledonia/20/1999 (H1N1) Neuraminidase Protein

Catalog No. NR-2606
This reagent is the tangible property of the U.S. Government.

For research use only. Not for human use.

Contributor: BEI Resources
Manufacturer: American Peptide Company, Inc.

Product Description:
The 78-mer peptide array spans the neuraminidase (NA) protein of the A/New Caledonia/20/1999 (H1N1) strain of influenza virus (GenPept: CAD57252). Peptides are 13- to 17-mers, with 11 or 12 amino acid overlaps. Please see Table 1 for length and sequence of individual peptides.

Material Provided:
Peptides are provided lyophilized at 1 mg per vial.

Packaging/Storage:
Lyophilized peptides should be placed in a closed dry environment with desiccants and stored at -20ºC or colder immediately upon arrival. A frost-free freezer should be avoided, since changes in moisture and temperature may affect peptide stability.

Solubility:
Solubility may vary based on the amino acid content of the individual peptide (see Table 2). Peptides can almost always be dissolved in 100% DMSO.

Reconstitution:
Lyophilized peptides should be warmed to room temperature for 1 hour prior to reconstitution. They should be dissolved at the highest possible concentration, and then diluted with water or buffer to the working concentration. Buffer should be added only after the peptide is completely in solution because salts may cause aggregation.

The most common dissolution process is 1 mg of peptide in 1 mL of sterile, distilled water or 1 mL of 100% DMSO. The DMSO can be slowly diluted to a lower concentration with aqueous medium. Care must be taken to ensure that the peptide does not begin to precipitate out of solution. For cell-based assays, 0.5% DMSO in medium is usually well-tolerated.

Sonication and/or the addition of small amounts of dilute (10%) aqueous acetic acid for basic peptides, aqueous ammonia for acidic peptides or acetonitrile may also help dissolution (see Table 2). These solvents may not be appropriate for certain applications, including cell-based assays.

Storage of Reconstituted Peptides:
The shelf life of peptides in solution is very limited, especially for sequences containing cysteine, methionine, tryptophan, asparagine, glutamine, and N-terminal glutamic acid. In general, peptides may be aliquoted and stored in solution for a few days at -20ºC or colder. For long-term storage, peptides should be re-lyophilized and stored at -20ºC or colder. If long-term storage in solution is unavoidable, peptide solutions should be buffered to pH 5-6, aliquoted and stored at -20ºC or colder. Freeze-thaw cycles should be avoided.

Citation:
Acknowledgment for publications should read “The following reagent was obtained through BEI Resources, NIAID, NIH: Peptide Array, Influenza Virus A/New Caledonia/20/1999 (H1N1) Neuraminidase Protein, NR-2606.”

Biosafety Level: 1

Disclaimers:
You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI...
Resources are not liable for damages arising from the misidentification or misrepresentation of products.

Use Restrictions:
This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale. This material may be subject to third party patent rights.

References:

ATCC® is a trademark of the American Type Culture Collection.

Table 1

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 78</td>
<td>17</td>
<td>MNPNQKIITGISISIAI 17</td>
</tr>
<tr>
<td>2 of 78</td>
<td>17</td>
<td>ITIGSISIAIIGIISLM 23</td>
</tr>
<tr>
<td>3 of 78</td>
<td>17</td>
<td>ISIAIGIISLMLOIGNI 29</td>
</tr>
<tr>
<td>4 of 78</td>
<td>17</td>
<td>IISLMLOIGNIISIWAS 35</td>
</tr>
<tr>
<td>5 of 78</td>
<td>17</td>
<td>LQIGNIISIWASHSIQT 40</td>
</tr>
<tr>
<td>6 of 78</td>
<td>17</td>
<td>ISIWASHSIQTGSQHNHT 46</td>
</tr>
<tr>
<td>7 of 78</td>
<td>17</td>
<td>HSISHTGSQNHVCNQMR 52</td>
</tr>
<tr>
<td>8 of 78</td>
<td>17</td>
<td>SSOHNTGVHCNQRTITYEN 58</td>
</tr>
<tr>
<td>9 of 78</td>
<td>17</td>
<td>8HCNQTITYENSTWNVH 64</td>
</tr>
<tr>
<td>10 of 78</td>
<td>17</td>
<td>54 ITYENSTWVNHTYVNIN 70</td>
</tr>
<tr>
<td>11 of 78</td>
<td>17</td>
<td>60 TWVNHTYVNINNTNVVA 76</td>
</tr>
<tr>
<td>12 of 78</td>
<td>17</td>
<td>66 YVNINNTVVAGKDTKS 82</td>
</tr>
<tr>
<td>13 of 78</td>
<td>17</td>
<td>72 TNNVAGKDTSTVLAGN 88</td>
</tr>
<tr>
<td>14 of 78</td>
<td>17</td>
<td>78 KDKTSVTLAGNSSLCSI 94</td>
</tr>
<tr>
<td>15 of 78</td>
<td>17</td>
<td>84 TLAGNSSLCSISGWAIY 100</td>
</tr>
<tr>
<td>16 of 78</td>
<td>17</td>
<td>90 SLCSISGWAIYTKDNSI 106</td>
</tr>
<tr>
<td>17 of 78</td>
<td>17</td>
<td>96 GWAYTDNKSISIRQSKG 112</td>
</tr>
<tr>
<td>18 of 78</td>
<td>17</td>
<td>102 KDNLRSIRIKGDVFVIR 118</td>
</tr>
<tr>
<td>19 of 78</td>
<td>16</td>
<td>108 IGSKGVFVIREPFIS 123</td>
</tr>
<tr>
<td>20 of 78</td>
<td>16</td>
<td>113 DVFVIREPFISCHLHE 128</td>
</tr>
<tr>
<td>21 of 78</td>
<td>17</td>
<td>118 REPISCCHLERTFFL 134</td>
</tr>
<tr>
<td>22 of 78</td>
<td>17</td>
<td>124 CSHELRCRFFLTQGALL 140</td>
</tr>
<tr>
<td>23 of 78</td>
<td>17</td>
<td>130 RTFFLTQGALLNDKHSN 146</td>
</tr>
<tr>
<td>24 of 78</td>
<td>17</td>
<td>135 TGALLNDKHSNGTVK 151</td>
</tr>
<tr>
<td>25 of 78</td>
<td>17</td>
<td>141 NDKHSNGTVKDRSPYRA 157</td>
</tr>
<tr>
<td>26 of 78</td>
<td>17</td>
<td>147 GTVKDRSPYRALMSCPL 163</td>
</tr>
<tr>
<td>27 of 78</td>
<td>17</td>
<td>153 SPYRALMSCPLGEAPSP 169</td>
</tr>
<tr>
<td>28 of 78</td>
<td>17</td>
<td>159 MSCPMLGEAPSPYNSKF 175</td>
</tr>
<tr>
<td>29 of 78</td>
<td>17</td>
<td>165 EAPSPYNFSVAVSA 181</td>
</tr>
<tr>
<td>30 of 78</td>
<td>17</td>
<td>171 NSKFESVAWSASACGD 187</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 of 78</td>
<td>17</td>
<td>177 VAWSASACHDGMGWLT 193</td>
</tr>
<tr>
<td>32 of 78</td>
<td>17</td>
<td>183 ACHDGMGWLTIGISGPD 199</td>
</tr>
<tr>
<td>33 of 78</td>
<td>17</td>
<td>189 GWLTIGISGPDN 205</td>
</tr>
<tr>
<td>34 of 78</td>
<td>17</td>
<td>195 ISGPDN 211</td>
</tr>
<tr>
<td>35 of 78</td>
<td>17</td>
<td>201 GAVAVLKYN 217</td>
</tr>
<tr>
<td>36 of 78</td>
<td>17</td>
<td>207 KYN 223</td>
</tr>
<tr>
<td>37 of 78</td>
<td>17</td>
<td>213 TETIKSVW 229</td>
</tr>
<tr>
<td>38 of 78</td>
<td>17</td>
<td>219 WKKRILRTQ 235</td>
</tr>
<tr>
<td>39 of 78</td>
<td>17</td>
<td>225 RTQESCVC 241</td>
</tr>
<tr>
<td>40 of 78</td>
<td>17</td>
<td>231 CVCVNGSCFTIM 247</td>
</tr>
<tr>
<td>41 of 78</td>
<td>17</td>
<td>237 SCFTIMTDG 253</td>
</tr>
<tr>
<td>42 of 78</td>
<td>17</td>
<td>243 TDKPSN 259</td>
</tr>
<tr>
<td>43 of 78</td>
<td>17</td>
<td>249 GAA 265</td>
</tr>
<tr>
<td>44 of 78</td>
<td>17</td>
<td>255 IF 271</td>
</tr>
<tr>
<td>45 of 78</td>
<td>17</td>
<td>261 GKV 277</td>
</tr>
<tr>
<td>46 of 78</td>
<td>17</td>
<td>267 IELNA 283</td>
</tr>
<tr>
<td>47 of 78</td>
<td>17</td>
<td>273 NFHYE 289</td>
</tr>
<tr>
<td>48 of 78</td>
<td>17</td>
<td>279 CSCY 295</td>
</tr>
<tr>
<td>49 of 78</td>
<td>17</td>
<td>285 TGTVMCV 301</td>
</tr>
<tr>
<td>50 of 78</td>
<td>17</td>
<td>291 VCRDNW 307</td>
</tr>
<tr>
<td>51 of 78</td>
<td>17</td>
<td>297 HGSNRPW 313</td>
</tr>
<tr>
<td>52 of 78</td>
<td>17</td>
<td>303 WVSFNQNL 319</td>
</tr>
<tr>
<td>53 of 78</td>
<td>17</td>
<td>309 NLDYS 325</td>
</tr>
<tr>
<td>54 of 78</td>
<td>17</td>
<td>315 GYI 331</td>
</tr>
<tr>
<td>55 of 78</td>
<td>17</td>
<td>321 VFGDN 337</td>
</tr>
<tr>
<td>56 of 78</td>
<td>17</td>
<td>327 RPKDGE 343</td>
</tr>
<tr>
<td>57 of 78</td>
<td>17</td>
<td>333 GSCNPVT 349</td>
</tr>
<tr>
<td>58 of 78</td>
<td>17</td>
<td>339 TVGDAD 355</td>
</tr>
<tr>
<td>59 of 78</td>
<td>17</td>
<td>345 GVK 361</td>
</tr>
<tr>
<td>60 of 78</td>
<td>17</td>
<td>351 K 367</td>
</tr>
<tr>
<td>61 of 78</td>
<td>17</td>
<td>357 WIV 373</td>
</tr>
<tr>
<td>62 of 78</td>
<td>17</td>
<td>363 KSNR 379</td>
</tr>
<tr>
<td>63 of 78</td>
<td>17</td>
<td>369 KGFEMW 385</td>
</tr>
<tr>
<td>64 of 78</td>
<td>17</td>
<td>375 WPNGWTD 391</td>
</tr>
<tr>
<td>65 of 78</td>
<td>17</td>
<td>381 TDTDSFS 397</td>
</tr>
<tr>
<td>66 of 78</td>
<td>17</td>
<td>387 FSVKQ 403</td>
</tr>
<tr>
<td>67 of 78</td>
<td>17</td>
<td>393 VVAITWD 409</td>
</tr>
<tr>
<td>68 of 78</td>
<td>17</td>
<td>399 WSGYG 415</td>
</tr>
<tr>
<td>69 of 78</td>
<td>16</td>
<td>405 SFVHPE 420</td>
</tr>
<tr>
<td>70 of 78</td>
<td>17</td>
<td>410 PELTLGCD 426</td>
</tr>
<tr>
<td>71 of 78</td>
<td>17</td>
<td>416 DCIRPCFW 432</td>
</tr>
<tr>
<td>72 of 78</td>
<td>17</td>
<td>422 FWVEL 438</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>73 of 78</td>
<td>17</td>
<td>428 RGLPRENTIWTSGSSI 444</td>
</tr>
<tr>
<td>74 of 78</td>
<td>17</td>
<td>434 NTTIWTSGSSISFCGVN 450</td>
</tr>
<tr>
<td>75 of 78</td>
<td>17</td>
<td>440 SGSSISFCGVNSDTANW 456</td>
</tr>
<tr>
<td>76 of 78</td>
<td>17</td>
<td>446 FCGVNSDTANWSWPDGA 462</td>
</tr>
<tr>
<td>77 of 78</td>
<td>17</td>
<td>452 DTANWSWPDGAELPFTI 468</td>
</tr>
<tr>
<td>78 of 78</td>
<td>13</td>
<td>458 WPDGAELPFTIDK 470</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Solubility</th>
<th>Solvent</th>
<th>Reconstitution pH, if required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 78</td>
<td>1 mg/mL</td>
<td>40% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>2 of 78</td>
<td>1 mg/mL</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>3 of 78</td>
<td>1 mg/mL</td>
<td>50% formic acid and 50% acetonitrile</td>
<td>pH 1</td>
</tr>
<tr>
<td>4 of 78</td>
<td>1 mg/mL</td>
<td>5% ammonium hydroxide in water</td>
<td>pH 11</td>
</tr>
<tr>
<td>5 of 78</td>
<td>1 mg/mL</td>
<td>2% formic acid and 40% acetonitrile in water</td>
<td>pH 3</td>
</tr>
<tr>
<td>6 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>7 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>8 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>9 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>10 of 78</td>
<td>1 mg/mL</td>
<td>5% formic acid and 20% acetonitrile in water</td>
<td>pH 3</td>
</tr>
<tr>
<td>11 of 78</td>
<td>1 mg/mL</td>
<td>50% formic acid and 50% acetonitrile</td>
<td>pH 1</td>
</tr>
<tr>
<td>12 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>13 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>14 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>15 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile and 2% acetic acid in water</td>
<td>pH 3</td>
</tr>
<tr>
<td>16 of 78</td>
<td>1 mg/mL</td>
<td>5% ammonium hydroxide in water</td>
<td>pH 11</td>
</tr>
<tr>
<td>17 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>18 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>19 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>20 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>21 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>22 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>23 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>24 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>25 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>26 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>27 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>28 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>29 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>30 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>Peptide</td>
<td>Solubility</td>
<td>Solvent</td>
<td>Reconstitution pH, if required</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>31 of 78</td>
<td>1 mg/mL</td>
<td>40% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>32 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>33 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 20% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>34 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>35 of 78</td>
<td>1 mg/mL</td>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>36 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>37 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>38 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>39 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>40 of 78</td>
<td>1 mg/mL</td>
<td>50% formic acid and 50% acetonitrile</td>
<td>pH 1</td>
</tr>
<tr>
<td>41 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>42 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>43 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>44 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>45 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>46 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>47 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 20% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>48 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>49 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>50 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>51 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>52 of 78</td>
<td>1 mg/mL</td>
<td>5% ammonium hydroxide in water</td>
<td>pH 11</td>
</tr>
<tr>
<td>53 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 30% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>54 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>55 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>56 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>57 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>58 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>59 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>60 of 78</td>
<td>1 mg/mL</td>
<td>10% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>61 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>62 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>63 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>64 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>65 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 20% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>66 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 30% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>67 of 78</td>
<td>1 mg/mL</td>
<td>0.02% ammonia and 20% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>68 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>69 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>70 of 78</td>
<td>1 mg/mL</td>
<td>40% acetonitrile in water</td>
<td>pH 6</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Solubility</th>
<th>Solvent</th>
<th>Reconstitution pH, if required</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>72 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>73 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>74 of 78</td>
<td>1 mg/mL</td>
<td>0.05% ammonia and 20% acetonitrile in water</td>
<td>pH 8</td>
</tr>
<tr>
<td>75 of 78</td>
<td>1 mg/mL</td>
<td>0.04% trifluoroacetic acid in water</td>
<td>pH 7</td>
</tr>
<tr>
<td>76 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>77 of 78</td>
<td>1 mg/mL</td>
<td>30% acetonitrile in water</td>
<td>pH 6</td>
</tr>
<tr>
<td>78 of 78</td>
<td>1 mg/mL</td>
<td>20% acetonitrile in water</td>
<td>pH 6</td>
</tr>
</tbody>
</table>