Yersinia pestis, Strain KIM, Gateway®
Clone Set, Recombinant in Escherichia coli, Plate 4

Catalog No. NR-19600
This reagent is the tangible property of the U.S. Government.

For research use only. Not for human use.

Contributor:
Pathogen Functional Genomics Resource Center at the J. Craig Venter Institute

Manufacturer:
BEI Resources

Product Description:
The Yersinia pestis (Y. pestis), strain KIM, Gateway® clone set consists of 43 plates (plate 2 of this clone set has been discontinued) which contain more than 3600 sequence validated clones from Y. pestis, strain KIM cloned in Escherichia coli (E. coli) DH10B-T1 cells. Each open reading frame was constructed in vector pDONR™221 (Invitrogen™) with an ATG start codon and a TAG stop codon. The sequence was validated by full length sequencing of each clone with greater than 1X coverage and a mutation rate of less than 0.2%. Detailed information about each clone is shown in Table 1.

Information related to the use of Gateway® Clones can be obtained from Invitrogen™. Recombination was facilitated through an attB substrate (attB-PCR product or a linearized attB expression clone) with an attP substrate (pDONR™221) to create an attL-containing entry clone. The entry clone contains recombinational cloning sites, attL1 and attL2, to facilitate gene transfer into a destination vector, M13 forward and reverse priming sites for sequencing and a kanamycin resistance gene for selection. Please refer to the Invitrogen™ Gateway® Technology Manual for additional details.

Material Provided:
Each inoculated well of the 96-well plate contains approximately 60 µL of E. coli culture (strain DH10B-T1) in Luria Bertani (LB) Broth containing 50 µg/mL kanamycin supplemented with 15% glycerol.

Note: Production in the 96-well format has increased risk of cross-contamination between adjacent wells. Individual clones should be purified (e.g. single colony isolation and purification using good microbiological practices) and sequence-verified prior to use. BEI Resources cannot confirm or validate any clone not identified on the plate information table.

Packaging/Storage:
NR-19600 was packaged aseptically in a 96-well plate. The product is provided frozen and should be stored at -80°C or colder immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze-thaw cycles should be avoided.

Growth Conditions:
Media:
LB Broth or Agar containing 50 µg/mL kanamycin.
Incubation:
Temperature: E. coli, strain DH10B-T1 clones should be grown at 37°C.
Atmosphere: Aerobic
Propagation:
1. Scrape top of frozen well with a pipette tip and streak onto agar plate.
2. Incubate the plates at 37°C for 18 to 24 hours.

Citation:
Acknowledgment for publications should read “The following reagent was obtained through BEI Resources, NIAID, NIH: Yersinia pestis, Strain KIM, Gateway® Clone Set, Recombinant in Escherichia coli, Plate 4, NR-19600.”

Biosafety Level: 1

Disclaimers:
You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the depositing institution's view.
misidentification or misrepresentation of products.

Use Restrictions:
This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale.

Table 1: *Yersinia pestis*, Strain KIM, Gateway® Clone Set, Recombinant in *Escherichia coli*, Plate 4 (UYPV)

<table>
<thead>
<tr>
<th>Clone</th>
<th>Well Position</th>
<th>Locus ID1</th>
<th>Description (Gene name)</th>
<th>ORF Length</th>
<th>Accession Number</th>
<th>Average Depth of Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>36443</td>
<td>A01</td>
<td>NTL02YP2534</td>
<td>hypothetical protein</td>
<td>300</td>
<td>AAM86130.1</td>
<td>3.2</td>
</tr>
<tr>
<td>38615</td>
<td>A03</td>
<td>NTL02YP1441</td>
<td>thiosulfate binding periplasmic protein of sulfate/thiosulfate ABC</td>
<td>1038</td>
<td>AAM85037.1</td>
<td>4.40445269</td>
</tr>
<tr>
<td>38697</td>
<td>A04</td>
<td>NTL02YP0359</td>
<td>dTDP-glucose 4,6-dehydratase</td>
<td>1074</td>
<td>AAM83955.1</td>
<td>4.43716338</td>
</tr>
<tr>
<td>38707</td>
<td>A05</td>
<td>NTL02YP0356</td>
<td>putative transport protein</td>
<td>1080</td>
<td>AAM83952.1</td>
<td>4.38035714</td>
</tr>
<tr>
<td>38725</td>
<td>A07</td>
<td>NTL02YP0364</td>
<td>TDP-Fuc4NAc:lipid II Fuc4NAc transferase</td>
<td>1086</td>
<td>AAM83960.1</td>
<td>4.28419183</td>
</tr>
<tr>
<td>38741</td>
<td>A08</td>
<td>NTL02YP360</td>
<td>glucose-1-phosphate thymidylyltransferase</td>
<td>1092</td>
<td>AAM83956.1</td>
<td>6.97173145</td>
</tr>
<tr>
<td>38754</td>
<td>A09</td>
<td>NTL02YP0355</td>
<td>UDP-GlcNAC:undecaprenylphosphate GlcNAC-1-phosphate transferase</td>
<td>1098</td>
<td>AAM83951.1</td>
<td>6.46924429</td>
</tr>
<tr>
<td>38760</td>
<td>A10</td>
<td>NTL02YP3598</td>
<td>3-isopropylmalate dehydrogenase</td>
<td>1098</td>
<td>AAM87194.1</td>
<td>2.36906854</td>
</tr>
<tr>
<td>38801</td>
<td>A11</td>
<td>NTL02YP1444</td>
<td>ATP-binding component of sulfate permease A protein</td>
<td>1119</td>
<td>AAM85040.1</td>
<td>3.83951682</td>
</tr>
<tr>
<td>38923</td>
<td>A12</td>
<td>NTL02YP3601</td>
<td>putative efflux protein</td>
<td>1182</td>
<td>AAM87197.1</td>
<td>3.22094296</td>
</tr>
<tr>
<td>38926</td>
<td>B01</td>
<td>NTL02YP0357</td>
<td>UDP-N-acetyl glucosamine -2-epimerase</td>
<td>1185</td>
<td>AAM83953.1</td>
<td>2.29714286</td>
</tr>
<tr>
<td>36519</td>
<td>B02</td>
<td>NTL02YP0353</td>
<td>thioredoxin 1</td>
<td>327</td>
<td>AAM83949.1</td>
<td>4.9346049</td>
</tr>
<tr>
<td>36538</td>
<td>B03</td>
<td>NTL02YP3619</td>
<td>hypothetical protein</td>
<td>333</td>
<td>AAM87216.1</td>
<td>5.58713137</td>
</tr>
<tr>
<td>36678</td>
<td>B04</td>
<td>NTL02YP2529</td>
<td>putative regulator</td>
<td>387</td>
<td>AAM86125.1</td>
<td>3.99297424</td>
</tr>
<tr>
<td>36866</td>
<td>B05</td>
<td>NTL02YP3624</td>
<td>hypothetical protein</td>
<td>444</td>
<td>AAM87220.1</td>
<td>4.23760331</td>
</tr>
<tr>
<td>36904</td>
<td>B06</td>
<td>NTL02YP1421</td>
<td>cytochrome c-type protein</td>
<td>456</td>
<td>AAM85017.1</td>
<td>5.83669355</td>
</tr>
<tr>
<td>36915</td>
<td>B07</td>
<td>NTL02YP1425</td>
<td>hypothetical protein</td>
<td>459</td>
<td>AAM85021.1</td>
<td>3.44088176</td>
</tr>
<tr>
<td>36923</td>
<td>B08</td>
<td>NTL02YP0337</td>
<td>hypothetical protein</td>
<td>462</td>
<td>AAM83933.1</td>
<td>5.53984064</td>
</tr>
<tr>
<td>37002</td>
<td>B09</td>
<td>NTL02YP0336</td>
<td>hypothetical protein</td>
<td>483</td>
<td>AAM83932.1</td>
<td>2</td>
</tr>
<tr>
<td>38970</td>
<td>B10</td>
<td>NTL02YP1456</td>
<td>putative membrane protein, possible efflux component</td>
<td>1206</td>
<td>AAM85052.1</td>
<td>3.89486356</td>
</tr>
<tr>
<td>38969</td>
<td>B11</td>
<td>NTL02YP0362</td>
<td>putative regulator</td>
<td>1206</td>
<td>AAM83958.1</td>
<td>2.92857143</td>
</tr>
<tr>
<td>38999</td>
<td>C01</td>
<td>NTL02YP1450</td>
<td>putative aminotransferase</td>
<td>1227</td>
<td>AAM85046.1</td>
<td>3.78768745</td>
</tr>
<tr>
<td>39010</td>
<td>C02</td>
<td>NTL02YP1446</td>
<td>hypothetical protein</td>
<td>1233</td>
<td>AAM85042.1</td>
<td>4.0494894</td>
</tr>
<tr>
<td>39031</td>
<td>C03</td>
<td>NTL02YP2540</td>
<td>galactoside permease (M protein)</td>
<td>1245</td>
<td>AAM86136.1</td>
<td>4.10116732</td>
</tr>
<tr>
<td>39040</td>
<td>C04</td>
<td>NTL02YP0363</td>
<td>putative cytochrome</td>
<td>1257</td>
<td>AAM83959.1</td>
<td>4.52505783</td>
</tr>
<tr>
<td>39047</td>
<td>C05</td>
<td>NTL02YP0354</td>
<td>transcription termination factor Rho polarity suppressor</td>
<td>1260</td>
<td>AAM83950.1</td>
<td>5.24538462</td>
</tr>
<tr>
<td>39052</td>
<td>C06</td>
<td>NTL02YP0358</td>
<td>UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase</td>
<td>1263</td>
<td>AAM83954.1</td>
<td>3.42747506</td>
</tr>
<tr>
<td>39227</td>
<td>C07</td>
<td>NTL02YP0365</td>
<td>TDP-Fuc4NAc:lipid II transferase</td>
<td>1365</td>
<td>AAM83961.1</td>
<td>3.67544484</td>
</tr>
</tbody>
</table>

References:

ATCC® is a trademark of the American Type Culture Collection.
<table>
<thead>
<tr>
<th>Clone</th>
<th>Well Position</th>
<th>Locus ID¹</th>
<th>Description (Gene name)</th>
<th>ORF Length</th>
<th>Accession Number</th>
<th>Average Depth of Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>39287</td>
<td>C08</td>
<td>NTL02YP2508</td>
<td>putative transport protein</td>
<td>1395</td>
<td>AAM86104.1</td>
<td>3.68850174</td>
</tr>
<tr>
<td>39344</td>
<td>C09</td>
<td>NTL02YP0341</td>
<td>hypothetical protein</td>
<td>1443</td>
<td>AAM83937.1</td>
<td>5.96358732</td>
</tr>
<tr>
<td>37072</td>
<td>C10</td>
<td>NTL02YP2545</td>
<td>hypothetical protein</td>
<td>507</td>
<td>AAM86141.1</td>
<td>7.4095064</td>
</tr>
<tr>
<td>37116</td>
<td>C11</td>
<td>NTL02YP3625</td>
<td>hypothetical protein</td>
<td>519</td>
<td>AAM87221.1</td>
<td>6.72271914</td>
</tr>
<tr>
<td>37114</td>
<td>C12</td>
<td>NTL02YP2517</td>
<td>hypothetical protein</td>
<td>519</td>
<td>AAM86113.1</td>
<td>6.5706619</td>
</tr>
<tr>
<td>37236</td>
<td>D01</td>
<td>NTL02YP3627</td>
<td>hypothetical protein</td>
<td>561</td>
<td>AAM87223.1</td>
<td>5.83361065</td>
</tr>
<tr>
<td>37265</td>
<td>D02</td>
<td>NTL02YP2514</td>
<td>hypothetical protein</td>
<td>570</td>
<td>AAM86110.1</td>
<td>2.726292951</td>
</tr>
<tr>
<td>37368</td>
<td>D03</td>
<td>NTL02YP3600</td>
<td>isopropylmalate isomerase subunit</td>
<td>603</td>
<td>AAM87196.1</td>
<td>4.79160187</td>
</tr>
<tr>
<td>37402</td>
<td>D04</td>
<td>NTL02YP1422</td>
<td>cytochrome c-type protein</td>
<td>618</td>
<td>AAM85018.1</td>
<td>5.80243161</td>
</tr>
<tr>
<td>37421</td>
<td>D05</td>
<td>NTL02YP3630</td>
<td>hypothetical protein</td>
<td>621</td>
<td>AAM87226.1</td>
<td>2</td>
</tr>
<tr>
<td>37430</td>
<td>D06</td>
<td>NTL02YP1423</td>
<td>hypothetical protein</td>
<td>624</td>
<td>AAM85019.1</td>
<td>2.801204821</td>
</tr>
<tr>
<td>37535</td>
<td>D07</td>
<td>NTL02YP2543</td>
<td>yersiniabactin biosynthesis component</td>
<td>657</td>
<td>AAM86139.1</td>
<td>5.13629842</td>
</tr>
<tr>
<td>37608</td>
<td>D08</td>
<td>NTL02YP1457</td>
<td>transcriptional regulator in 2-component system</td>
<td>684</td>
<td>AAM85053.1</td>
<td>2</td>
</tr>
<tr>
<td>39366</td>
<td>D09</td>
<td>NTL02YP1453</td>
<td>putative permease</td>
<td>1461</td>
<td>AAM85049.1</td>
<td>3.47368421</td>
</tr>
<tr>
<td>39381</td>
<td>D10</td>
<td>NTL02YP0339</td>
<td>ketol-acid reductoisomerase</td>
<td>1479</td>
<td>AAM83935.1</td>
<td>3.9526004</td>
</tr>
<tr>
<td>39405</td>
<td>D11</td>
<td>NTL02YP3599</td>
<td>3-isopropylmalate isomerase (dehydratase) subunit</td>
<td>1500</td>
<td>AAM87195.1</td>
<td>2.36168831</td>
</tr>
<tr>
<td>39418</td>
<td>D12</td>
<td>NTL02YP3626</td>
<td>hypothetical protein</td>
<td>1512</td>
<td>AAM87222.1</td>
<td>4.29381443</td>
</tr>
<tr>
<td>39438</td>
<td>E01</td>
<td>NTL02YP1449</td>
<td>hypothetical protein</td>
<td>1530</td>
<td>AAM85045.1</td>
<td>3.98917917</td>
</tr>
<tr>
<td>39455</td>
<td>E02</td>
<td>NTL02YP1448</td>
<td>putative sensor kinase</td>
<td>1545</td>
<td>AAM85044.1</td>
<td>5.56845426</td>
</tr>
<tr>
<td>39499</td>
<td>E03</td>
<td>NTL02YP3604</td>
<td>putative ABC transport system thiamine permease protein</td>
<td>1620</td>
<td>AAM87200.1</td>
<td>3.11385542</td>
</tr>
<tr>
<td>39572</td>
<td>E04</td>
<td>NTL02YP2532</td>
<td>putative ABC transporter</td>
<td>1719</td>
<td>AAM86127.1</td>
<td>3.15747584</td>
</tr>
<tr>
<td>39629</td>
<td>E05</td>
<td>NTL02YP3623</td>
<td>hypothetical protein</td>
<td>1845</td>
<td>AAM87219.1</td>
<td>5.76976127</td>
</tr>
<tr>
<td>37752</td>
<td>E06</td>
<td>NTL02YP3605</td>
<td>putative ATP-binding component of a transport system</td>
<td>732</td>
<td>AAM87201.1</td>
<td>5.27072539</td>
</tr>
<tr>
<td>37773</td>
<td>E07</td>
<td>NTL02YP0366</td>
<td>probable UDP-N-acetyl-D-mannosaminuronic acid transferase</td>
<td>741</td>
<td>AAM83962.1</td>
<td>3.76568502</td>
</tr>
<tr>
<td>37792</td>
<td>E08</td>
<td>NTL02YP3629</td>
<td>hypothetical protein</td>
<td>744</td>
<td>AAM87225.1</td>
<td>6.37372449</td>
</tr>
<tr>
<td>37848</td>
<td>E09</td>
<td>NTL02YP3606</td>
<td>hypothetical protein</td>
<td>768</td>
<td>AAM87202.1</td>
<td>6.24752475</td>
</tr>
<tr>
<td>37925</td>
<td>E10</td>
<td>NTL02YP0361</td>
<td>hypothetical protein</td>
<td>795</td>
<td>AAM83957.1</td>
<td>2.17964072</td>
</tr>
<tr>
<td>37984</td>
<td>E11</td>
<td>NTL02YP2535</td>
<td>hypothetical protein</td>
<td>813</td>
<td>AAM86131.1</td>
<td>4.56740914</td>
</tr>
<tr>
<td>38043</td>
<td>E12</td>
<td>NTL02YP1442</td>
<td>inner membrane permease T of sulfate/thiosulfate ABC</td>
<td>834</td>
<td>AAM85038.1</td>
<td>4.56750572</td>
</tr>
<tr>
<td>38065</td>
<td>F01</td>
<td>NTL02YP2511</td>
<td>PTS enzyme IIc, mannose-specific</td>
<td>840</td>
<td>AAM86107.1</td>
<td>2.33181818</td>
</tr>
<tr>
<td>38096</td>
<td>F02</td>
<td>NTL02YP2533</td>
<td>hypothetical protein</td>
<td>852</td>
<td>AAM86129.1</td>
<td>1.98654709</td>
</tr>
<tr>
<td>37960</td>
<td>F03</td>
<td>NTL02YP2502</td>
<td>putative 2-oxo-hept-3-ene-1,7-dioate hydratase</td>
<td>804</td>
<td>AAM86098.1</td>
<td>3.78672986</td>
</tr>
<tr>
<td>38042</td>
<td>F04</td>
<td>NTL02YP1379</td>
<td>hypothetical protein</td>
<td>834</td>
<td>AAM84975.1</td>
<td>4.37070938</td>
</tr>
<tr>
<td>38119</td>
<td>F05</td>
<td>NTL02YP2505</td>
<td>putative 3,4-dihydroxyphenylacetate 2,3-dioxygenase</td>
<td>858</td>
<td>AAM86101.1</td>
<td>4.63028953</td>
</tr>
<tr>
<td>38139</td>
<td>F06</td>
<td>NTL02YP1398</td>
<td>hypothetical protein</td>
<td>867</td>
<td>AAM84994.1</td>
<td>4.51157663</td>
</tr>
<tr>
<td>38185</td>
<td>F07</td>
<td>NTL02YP0327</td>
<td>hypothetical protein</td>
<td>882</td>
<td>AAM83923.1</td>
<td>6.59761388</td>
</tr>
<tr>
<td>38201</td>
<td>F08</td>
<td>NTL02YP2482</td>
<td>putative resistance protein, exporter</td>
<td>885</td>
<td>AAM86078.1</td>
<td>2</td>
</tr>
<tr>
<td>36061</td>
<td>F09</td>
<td>NTL02YP1412</td>
<td>hypothetical protein</td>
<td>165</td>
<td>AAM85008.1</td>
<td>-</td>
</tr>
<tr>
<td>36268</td>
<td>F10</td>
<td>NTL02YP1401</td>
<td>hypothetical protein</td>
<td>237</td>
<td>AAM84997.1</td>
<td>2.94954848</td>
</tr>
<tr>
<td>36361</td>
<td>F11</td>
<td>NTL02YP2485</td>
<td>DNA polymerase III, theta subunit</td>
<td>270</td>
<td>AAM86081.1</td>
<td>3.70645161</td>
</tr>
<tr>
<td>36385</td>
<td>F12</td>
<td>NTL02YP1416</td>
<td>hypothetical protein</td>
<td>279</td>
<td>AAM85012.1</td>
<td>3</td>
</tr>
<tr>
<td>36489</td>
<td>G01</td>
<td>NTL02YP0297</td>
<td>repressor of all met genes but metF</td>
<td>318</td>
<td>AAM83893.1</td>
<td>-</td>
</tr>
<tr>
<td>36604</td>
<td>G02</td>
<td>NTL02YP2481</td>
<td>hypothetical protein</td>
<td>357</td>
<td>AAM86077.1</td>
<td>3.79093199</td>
</tr>
</tbody>
</table>

¹ Locus ID refers to the location of the gene on the genome.
Product Information Sheet for NR-19600

<table>
<thead>
<tr>
<th>Clone</th>
<th>Well Position</th>
<th>Locus ID¹</th>
<th>Description (Gene name)</th>
<th>ORF Length</th>
<th>Accession Number</th>
<th>Average Depth of Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>38278 G03</td>
<td>NTL02YP0315</td>
<td>activator, hydrogen peroxide-inducible genes</td>
<td>918</td>
<td>AAM83911.1</td>
<td>6.73695198</td>
<td></td>
</tr>
<tr>
<td>38307 G04</td>
<td>NTL02YP0289</td>
<td>1,4-dihydroxy-2-naphthoate octaprenyltransferase</td>
<td>930</td>
<td>AAM83885.1</td>
<td>6.80721649</td>
<td></td>
</tr>
<tr>
<td>38372 G05</td>
<td>NTL02YP2486</td>
<td>putative proline iminopeptidase</td>
<td>951</td>
<td>AAM86082.1</td>
<td>6.96367306</td>
<td></td>
</tr>
<tr>
<td>38423 G06</td>
<td>NTL02YP3594</td>
<td>probable transcriptional activator for leuABCD operon</td>
<td>969</td>
<td>AAM87190.1</td>
<td>5.81863231</td>
<td></td>
</tr>
<tr>
<td>38487 G07</td>
<td>NTL02YP0326</td>
<td>putative ABC transporter permease protein</td>
<td>993</td>
<td>AAM83922.1</td>
<td>4.51597289</td>
<td></td>
</tr>
<tr>
<td>38517 G08</td>
<td>NTL02YP0332</td>
<td>branched-chain amino-acid aminotransferase</td>
<td>1002</td>
<td>AAM83928.1</td>
<td>5.3837716</td>
<td></td>
</tr>
<tr>
<td>38547 G09</td>
<td>NTL02YP3589</td>
<td>transcriptional repressor of fru operon and others</td>
<td>1011</td>
<td>AAM87185.1</td>
<td>5.46146527</td>
<td></td>
</tr>
<tr>
<td>38631 G10</td>
<td>NTL02YP1383</td>
<td>phosphoribosylaminomimidazole synthetase</td>
<td>1044</td>
<td>AAM84979.1</td>
<td>4.12730627</td>
<td></td>
</tr>
<tr>
<td>38668 G11</td>
<td>NTL02YP1395</td>
<td>lipoprotein-34</td>
<td>1062</td>
<td>AAM84991.1</td>
<td>3.48366606</td>
<td></td>
</tr>
<tr>
<td>36792 G12</td>
<td>NTL02YP1392</td>
<td>hypothetical protein</td>
<td>420</td>
<td>AAM84988.1</td>
<td>6.56521739</td>
<td></td>
</tr>
<tr>
<td>36798 H01</td>
<td>NTL02YP0328</td>
<td>hypothetical protein</td>
<td>423</td>
<td>AAM83924.1</td>
<td>2.99352052</td>
<td></td>
</tr>
<tr>
<td>36908 H02</td>
<td>NTL02YP3588</td>
<td>hypothetical protein</td>
<td>456</td>
<td>AAM87184.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>36918 H03</td>
<td>NTL02YP2480</td>
<td>hypothetical protein</td>
<td>459</td>
<td>AAM86076.1</td>
<td>4.55310621</td>
<td></td>
</tr>
<tr>
<td>36914 H04</td>
<td>NTL02YP1387</td>
<td>putative oxidoreductase</td>
<td>459</td>
<td>AAM84983.1</td>
<td>4.77154309</td>
<td></td>
</tr>
<tr>
<td>36946 H05</td>
<td>NTL02YP0296</td>
<td>hypothetical protein</td>
<td>468</td>
<td>AAM83892.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>36971 H06</td>
<td>NTL02YP1399</td>
<td>hypothetical protein</td>
<td>474</td>
<td>AAM84995.1</td>
<td>4.8988716</td>
<td></td>
</tr>
<tr>
<td>36970 H07</td>
<td>NTL02YP1393</td>
<td>bacterioferritin comigratory protein</td>
<td>474</td>
<td>AAM84989.1</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>36991 H08</td>
<td>NTL02YP2507</td>
<td>putative regulator</td>
<td>477</td>
<td>AAM86103.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>38677 H09</td>
<td>NTL02YP1389</td>
<td>putative permease</td>
<td>1065</td>
<td>AAM84985.1</td>
<td>3.3520362</td>
<td></td>
</tr>
<tr>
<td>38818 H10</td>
<td>NTL02YP1403</td>
<td>N-succinyl-diaminopimelate deacylase</td>
<td>1128</td>
<td>AAM84999.1</td>
<td>3.38955479</td>
<td></td>
</tr>
<tr>
<td>38885 H11</td>
<td>NTL02YP2479</td>
<td>flagellar biosynthesis protein</td>
<td>1161</td>
<td>AAM86075.1</td>
<td>4.05578684</td>
<td></td>
</tr>
<tr>
<td>38898 H12</td>
<td>NTL02YP0304</td>
<td>acetylornithine deacetylase</td>
<td>1170</td>
<td>AAM83900.1</td>
<td>3.97355372</td>
<td></td>
</tr>
</tbody>
</table>

¹The locus ID numbers given in this table were obtained from JCVI at the time of deposition. Please note that the locus tags have since been updated by JCVI and the corrected locus ID numbers can be obtained from the JCVI-CMR webpage using the locus search option and inputting the above locus IDs.