Genomic DNA from Adult Female *Dirofilaria immitis*, Strain Missouri 2005

Catalog No. NR-42493

This reagent is the tangible property of the U.S. Government.

For research use only. Not for human use.

Contributor:
Steven A. Williams, Director of Filarialis Research Reagent Resource Center and Gates Professor, Department of Biological Science, Smith College, Northampton, Massachusetts, USA

Manufacturer:
Filarialis Research Reagent Resource Center supported by Contract HHSN272201000030I, NIH-NIAID Animal Models of Infectious Disease Program

Product Description:
NR-42493 is a preparation of genomic DNA extracted from adult female *Dirofilaria immitis* (*D. immitis*), strain Missouri 2005. *D. immitis*, strain Missouri 2005 was originally obtained from TRS Laboratories in Athens, Georgia, USA.

D. immitis is a filarial nematode that causes cardiopulmonary dirofilariosis in wild and domesticated canines and felines, and is the causative parasite of human pulmonary dirofilariosis. *D. immitis* is commonly known as heartworm disease and transmission relies on mosquitoes as a vector. In the case of canines for which *D. immitis* is best adapted, mosquitoes deposit infective third stage larvae (L3) on the skin which penetrate the host. Maturation from stage L3 to L4 occurs between 3 and 12 days post-infection followed by subsequent molt producing juvenile adult worms between 50 and 70 days post-infection. The first juvenile adult worms arrive in the pulmonary artery and right ventricle of the heart between 70 and 85 days post-infection and reach sexual maturity approximately 120 days post-infection. Adult females are able to produce and release microfilariae between 6 and 9 months post-infection, which can be taken up by mosquitoes during a blood meal.

Humans and felines are much less suitable hosts. In humans, *D. immitis* may be able to reach a branch of the human pulmonary artery, but would trigger an immune response that destroys the immature nematodes; this infrequently results in pulmonary nodules. In felines, cardiopulmonary dirofilariosis follows a similar life cycle as in canines, but is often asymptomatic, and there is a marked reduction in nematode fertility and viability.

Material Provided:
Each vial of NR-42493 contains 0.5 μg to 2 μg of RNase A treated genomic DNA in TE buffer (1 mM Tris-HCl, 0.1 mM EDTA, pH ~ 8). The concentration is shown on the Certificate of Analysis. The vial should be centrifuged prior to opening.

Packaging/Storage:
NR-42493 was packaged in plastic vials. The product is provided frozen and should be stored at -20°C or colder upon arrival. Freeze-thaw cycles should be minimized.

Citation:
Acknowledgment for publications should read “The following reagent was provided by the NIH/NIAID Filarialis Research Reagent Resource Center for distribution by BEI Resources, NIAID, NIH: Genomic DNA from Adult Female *Dirofilaria immitis*, Strain Missouri 2005, NR-42493.”

Biosafety Level: 1

Disclaimers:
You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the misidentification or misrepresentation of products.

Use Restrictions:
This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale.

BEI Resources
www.beiresources.org

© 2013/2014/2015 American Type Culture Collection (ATCC). All rights reserved.

Page 1 of 2
References:

ATCC® is a trademark of the American Type Culture Collection.

Appendix I: Genomic DNA Isolation from Filarial Parasites

1. Thaw worms over ice and transfer to a 2 mL round bottom tube. Add 100 µL lysis buffer (0.1M EDTA, 0.1M Tris- pH 7.5, and 0.2M NaCl; sterilized by autoclaving) per 250 µL worms in buffer.
2. Add one 5mm BB [5 mm stainless steel scientific beads from Qiagen® (catalog # 69989)] to the 2 mL round bottom tube and attach to vortex mixer with special adaptor [Vortex Genie Adaptor, MO Bio Laboratories Inc. (catalog #13000-V1), alternatively, you can tape the tube on its side to the flat portion of a regular vortex mixer platform.] Vortex on the highest speed for 45 minutes, stopping every 10 minutes to change the position of the tube to ensure all areas of the tube are equally mixed.
3. Centrifuge the tube quickly before opening. Add an additional 150 µL of lysis buffer and vortex briefly. Note: The total volume of lysis buffer should be equal to the starting volume of worms in buffer.
4. Add 30 µL 10% SDS.
5. Add 2 µL of β-mercaptoethanol and vortex briefly.
6. Add 60 µL of Qiagen® Proteinase K (20 mg/ml). Vortex gently. Centrifuge the tube briefly in a nanofuge.
7. Incubate at 65°C for 4 hours to overnight.
8. Add 1.5 µL RNase A (100 mg/mL) and vortex gently. Spin the tube briefly in nanofuge.
9. Incubate at 37°C for 1 hour.
10. Centrifuge the tube briefly. Add 1 volume Tris-buffered phenol (pH 7.9). Vortex to mix.
11. Centrifuge at 2,000 rpm for 5 minutes.
12. Carefully remove the top aqueous phase and transfer to a new 1.5 mL tube.
13. Add an additional 1 volume phenol and vortex to mix.
14. Centrifuge at 2,000 rpm for 5 minutes.
15. Carefully extract aqueous phase and transfer to new 1.5 mL tube.
17. Centrifuge at 2,000 rpm for 5 minutes.
18. Carefully remove the top aqueous phase and transfer to a new 1.5 mL tube.
19. Add 1 volume cold isopropanol and 1/10 volume 3M sodium acetate. Vortex Briefly to mix. Note: At This point the DNA extraction can be stored at -20°C. If working with small amounts of starting materials you may add 3-6 µL of glycogen (5 mg/mL) to aid precipitation.
20. Centrifuge at 16,000 x g for 30 minutes at 4°C.
21. Carefully remove isopropanol without disturbing the pellet.
22. Wash the pellet with 1 mL cold ethanol (70-75%).
23. Centrifuge at 16,000 x g for 15 minutes at 4°C.
24. Carefully remove ethanol without disturbing the pellet. Resuspend in 50 µL 0.1X TE or nuclease-free water.
25. If necessary, incubate DNA for 10 minutes at 55°C to completely redissolve pellet.
26. Measure concentration using the nanodrop spectrophotometer. It is also a good idea to run your genomic DNA on a gel to check for the presence of RNA and the integrity of genomic DNA.
27. To remove residual organics dialyze genomic DNA against a beaker (approximately 250 mL) of 0.1X TE for 4 hours to overnight using a Millipore [47mm diameter 0.025 µm filters from Millipore (catalog number VSWP04700)] membrane.
Note: If there are no residual organics, this step is not necessary.