

Certificate of Analysis for NR-28620

Influenza A Virus, A/Hong Kong/1/1968 (H3N2) (mother clone)

Catalog No. NR-28620

Product Description: Pooled allantoic fluid from specific pathogen free (SPF) embryonated chicken eggs¹ infected with influenza A virus, A/Hong Kong/1/1968 (H3N2)

Passage History: MKX/MK2E2/E1M2E2/E1 (Isolating laboratory/WHO World Influenza Centre, London/Laboratory CDC, Health Canada, Ottawa/BEI); E# = Number passages in eggs; MK# = Number passages in monkey kidney cells; M# = Number passages in MDCK cells; X = unknown

Lot²: 61791684 Manufacturing Date: 21JUN2013

TEST	SPECIFICATIONS	RESULTS
Identification by Infectivity Using Embryonated Chicken Eggs ¹ Hemagglutination activity using allantoic fluid from infected eggs and 0.5% chicken red blood cells	Positive	Positive
Sequencing of Hemagglutinin and Matrix Coding Regions Hemagglutinin (694 nucleotides) Matrix (908 nucleotides)	Consistent with A/Hong Kong/1/1968 (H3N2) Consistent with A/Hong	99% identity with A/Hong Kong/1/1968 (H3N2)) (GenBank: CY044261) 100% identity with A/Hong
Titer by CEID ₅₀ Assay ^{3,4} in Embryonated Chicken Eggs ¹	Kong/1/1968 (H3N2) Report results	Kong/1/1968 (H3N2) (GenBank: CY044262) 1.6 × 10 ⁸ CEID ₅₀ per mL
	Report results	1.0 × 10 CEID50 Pei IIIL
Sterility (21-day incubation) Harpo's HTYE broth ⁵ , 37°C and 26°C, aerobic Trypticase soy broth, 37°C and 26°C, aerobic Sabouraud broth, 37°C and 26°C, aerobic Blood agar, 37°C, aerobic Blood agar, 37°C, anaerobic Thioglycollate broth, 37°C, anaerobic DMEM with 10% FBS, 37°C and 5% CO₂	No growth	No growth
Mycoplasma Contamination Agar and broth culture (14-day incubation at 37°C) DNA detection by PCR of extracted Test Article nucleic acid	None detected None detected	None detected None detected

¹9- to 10-day-old SPF Embryonated Chicken Eggs acquired from B&E Eggs, York Springs, Pennsylvania ²Grown in the allantoic cavity of embryonated chicken eggs ¹ for 3 days at 34°C in a humidified chamber

Date: 02 OCT 2013

Signature:

Title: Technical Manager, BEI Authentication or designee

ATCC®, on behalf of BEI Resources, hereby represents and warrants that the material provided under this certificate has been subjected to the tests and procedures specified and that the results described, along with any other data provided in this certificate, are true and accurate to the best of ATCC®'s knowledge.

ATCC® is a trademark of the American Type Culture Collection.

You are authorized to use this product for research use only. It is not intended for human use.

BEI Resources www.beiresources.org E-mail: contact@beiresources.org
Tel: 800-359-7370

Fax: 703-365-2898

³The Chicken Embryo Infectious Dose 50% (CEID₅₀) is the dilution of virus that under the conditions of the assay can be expected to infect 50% of the inoculated embryonated chicken eggs, just as a Lethal Dose 50% (LD₅₀) is expected to kill half of the animals exposed. A reciprocal of the dilution required to yield the CEID₅₀ provides a measure of the infectious titer (or infectivity) of a virus preparation.

⁴3 days at 34°C in a humidified chamber

⁵Atlas, Ronald M. <u>Handbook of Microbiological Media</u>. 3rd ed. Ed. Lawrence C. Parks. Boca Raton: CRC Press, 2004, p. 798.