Giardia lamblia, Strain GS/M

Catalog No. NR-12266

For research use only. Not for human use.

Contributor:
Dr. Theodore E. Nash, Chief, Gastrointestinal Parasites Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA

Manufacturer:
BEI Resources

Product Description:
Protozoa Classification: Hexamitidae, Giardiinae, Giardia
Species: Giardia lamblia (also referred to as Giardia intestinalis and Giardia duodenalis)

Strain: GS/M

Original Source: Giardia lamblia (G. lamblia), strain GS/M was isolated as trophozoites from the intestines of suckling mice that were infected as neonates by percutaneous intragastric injections of purified cysts of G. lamblia, strain GS.\(^1,2\) The parent strain GS was isolated from a human in the United States who had recently travelled to the Alaskan wilderness.\(^1,3\)

Comments: Axenized trophozoites of G. lamblia, strain GS/M have been used in experimental human infection studies.\(^2\)

G. lamblia is a pear-shaped, flagellated protozoan that causes a wide variety of gastrointestinal complaints and is one of the most common causes of parasite infection of humans worldwide, and the second most common in the United States. The disease is commonly water-borne because Giardia cysts are resistant to the chlorine levels in normal tap water and survive well in cold mountain streams. Food-borne transmission is rare but can occur with ingestion of raw or undercooked foods. Giardiasis is a zoonosis, and cross-infection among beaver, cattle, dogs, rodents, and big horn sheep provides a constant reservoir.\(^4\) The life cycle of Giardia consists of two stages: the fecal-orally transmitted cyst and the disease-causing trophozoite. Cysts are passed in a host's feces, remaining viable in a moist environment for months. Ingestion of 10 to 25 cysts can cause infection in humans.\(^5\)

The parent GS isolate has demonstrated poor encysting ability in vitro and has been used in experimental infections in human and adult mice.\(^2,3\)

Material Provided:
Each vial of NR-12266 contains approximately 0.5 mL of culture in cryopreservative. Please see Appendix I below for cryopreservation instructions.

Packaging/Storage:
NR-12266 was packaged aseptically in screw-capped plastic cryovials and is provided frozen on dry ice. The product should be stored at cryogenic temperature (r-130°C or colder), preferably in the vapor phase of a liquid nitrogen freezer. If liquid nitrogen storage facilities are not available, frozen cryovials may be stored at -70°C or colder for approximately one week. Note: Do not under any circumstances store vials at temperatures warmer than -70°C. Storage under these conditions will result in the death of the culture.

To insure the highest level of viability, the culture should be initiated immediately upon receipt. Any warming of the product during shipping and transfer must be avoided, as this will adversely affect the viability of the product. For transfer between freezers and for shipping, the product may be placed on dry ice for brief periods, although use of a portable liquid nitrogen carrier is preferred. Please read the following recommendations prior to using this material.

Growth Conditions:

Growth Media:
Keister's Modified Trypticase-Yeast Extract-Iron-Supplement (TYI-S-33) Medium [ATCC® medium 2695 (previously ATCC® medium 1404)], supplemented with Diamond's Vitamin Solution and 10% heat-inactivated adult bovine serum. Please see Appendix II for media preparation instructions.

Note: An alternative to ATCC® medium 2695 is ATCC® medium PRA-2155.

Incubation:
Temperature: 35°C
Atmosphere: microaerophilic

Propagation:
1. Thaw frozen ampoule in a 35°C water bath, for 2 to 3 min. Immense the ampoule just sufficient to cover the frozen material. Do not agitate the ampoule.
2. Immediately after thawing, aseptically transfer contents to a 16 x 125 mm screw-capped borosilicate glass test tube containing 13 mL of ATCC® medium 2695. Incubate the tube on a 15° horizontal slant at 35°C.

Maintenance:
1. When the culture has reached or is near peak density, place the tubes on ice for 10 minutes.
2. Gently invert the culture tube 10 times and aseptically transfer a 0.1 to 0.4 mL aliquot to a screw-capped test tube containing 13 mL ATCC® medium 2695.
3. Incubate the culture on a 15° horizontal slant at 35°C.
4. Transfer the culture every 3 to 4 days as described in Maintenance steps 1 and 2. The transfer interval will depend on the size of the inoculum and the quality of the medium. This should be determined empirically by examining the culture on a daily basis until conditions for stable growth have been achieved. Do not allow the culture to overgrow. Viability of the culture may be affected soon after reaching peak density.

Citation:
Acknowledgment for publications should read “The following
reagent was obtained through BEI Resources, NIAID, NIH: Giardia lamblia, Strain GS/M, NR-12266.*

Biosafety Level: 2

Disclaimers:

You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the misidentification or misrepresentation of products.

Use Restrictions:

This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale.

References:

ATCC® is a trademark of the American Type Culture Collection.
APPENDIX I: CRYOPRESERVATION

1. Harvest cells from a culture that is at or near peak density. To detach cells from the wall of the culture tubes place on ice for 10 min. Invert tubes several times until the majority of the cells are in suspension. Centrifuge tubes at 800 x g for 5 minutes.

2. Adjust the cell concentration to 1.0×10^7 to 2×10^7 cells/mL with fresh medium.

3. Before centrifuging, prepare a 24% (v/v) solution of sterile DMSO in fresh medium containing 8% (w/v) sucrose. The solution is prepared as follows:
 a) Add 1.05 g sucrose to 10 mL of fresh medium and sterile filter through a 0.2 µm filter.
 b) Add 2.4 mL of DMSO to an ice cold 20 x 150 mm screw-capped test tube.
 c) Place the tube on ice and allow the DMSO to solidify (~ 5 min) and then add 7.6 mL of ice cold medium prepared in step 3a. The final concentration will be 24% (v/v) DMSO and 8% (w/v) sucrose.
 d) Invert several times to dissolve the DMSO.
 e) Allow to warm to room temperature.

4. Mix the cell preparation and the cryoprotective agent, prepared in step 3, in equal portions. Thus, the final concentration will equal 12% (v/v) DMSO, 4% (w/v) sucrose and 10^7 cells/mL. The time from the mixing of the cell preparation and DMSO stock solution before the freezing process is begun should be no less than 15 min. and no longer than 30 min.

5. Dispense 0.5 mL aliquots into 1 to 2 mL sterile plastic screw-capped vials for cryopreservation.

6. Place the vials in a controlled rate freezing unit. From room temperature, cool at -1°C/min to -40°C. If the freezing unit can compensate for the heat of fusion, maintain rate at -1°C/min through the heat of fusion. At -40°C, plunge into liquid nitrogen. Alternatively, place the vials in a Nalgene 1°C freezing apparatus. Place the apparatus at -80°C for 1.5 to 2 hours and then plunge ampoules into liquid nitrogen (the cooling rate in this apparatus is approximately -1°C/min).

7. Store in either the vapor or liquid phase of a nitrogen refrigerator (-130°C or colder).
APPENDIX II: MEDIA

1. Prepare the Keister's Modified TYI-S-SS medium (see formulation below) by dissolving the components in 880 mL of distilled water in the order indicated, adjust the pH to 7.0 to 7.2 with 1 N NaOH, and sterile filter.

 Keister's Modified TYI-S-33 Medium (ATCC® Medium 2695)
 Casein Digest (BD Tryptase 211705) 20.0 g
 Yeast Extract (BD 212750) 10.0 g
 Bovine Bile (Sigma B-8381) 0.75 g
 NaCl 2.0 g
 L-Cysteine HCl 2.0 g
 K₂HPO₄ 1.0 g
 KH₂PO₄ 0.6 g
 Ferric Ammonium Citrate 22.8 mg
 Distilled water 880 mL

2. Prepare the each of the four individual Diamond’s Vitamin Stock Solutions (listed below) and sterile filter each one.

 Diamond’s Vitamin Stock Solution 1: (DL-6,8-Thioctic acid [DL-α-Lipoic acid], 1 mg/mL)
 Dissolve 100 mg of DL-6,8-Thioctic acid (oxidized form, Sigma T1395) in 100 mL of absolute ethanol.

 Diamond’s Vitamin Stock Solution 2: (Vitamin B₁₂, 0.4 mg/mL)
 Dissolve 40 mg of vitamin B₁₂ (Sigma V2876) in 100 mL distilled water.

 Diamond’s Vitamin Stock Solution 3: (Tween 80, 50% w/v)
 Dissolve 50 g of Tween 80 (Sigma P1754) in 100 mL absolute ethanol.

 Diamond’s Vitamin Stock Solution 4:
 α-tocopherol phosphate, disodium salt 0.025 mg
 d-biotin 0.025 mg
 Calciferol (Vitamin D2) 0.250 mg
 Calcium D-(-)pantothenate 0.025 mg
 Choline chloride 1.250 mg
 Folic acid 0.025 mg
 i-Inositol 0.125 mg
 Menadione (Vitamin K3) 0.025 mg
 Niacin 0.0625 mg
 Niacinamide 0.0625 mg
 p-aminobenzoic acid 0.125 mg
 Pyridoxal HCl 0.0625 mg
 Pyridoxine HCl 0.0625 mg
 Riboflavin 0.0625 mg
 Thiamine HCl 0.025 mg
 Vitamin A 0.250 mg
 Distilled water 1 L

3. Prepare Diamond’s Vitamin Solution by combining the stock solutions as follows:
 Diamond’s Vitamin Stock Solution 1 0.4 mL
 Diamond’s Vitamin Stock Solution 2 1.2 mL
 Diamond’s Vitamin Stock Solution 3 0.4 mL
 Diamond’s Vitamin Stock Solution 4 100.0 mL
 Sterile, distilled water 18.0 mL

4. Aseptically prepare the complete growth medium by adding 20 mL of Diamond’s Vitamin Solution and 100 mL of heat-inactivated adult bovine serum to the Keister’s Modified TYI-S-SS medium, and mix thoroughly.

5. Distribute 13 mL aliquots into 16 x 125 mm screw-capped borosilicate glass test tubes. Store at 4°C to 8°C in the dark. Use within 7 to 10 days. Long term storage may result in the formation of precipitates and failure to support growth of *Giardia*.

NOTE: Serum is heat-inactivated by exposure to 56°C for 30 minutes to inactivate proteins of the complement pathway.