Plasmodium falciparum, Strain NF54HT-GFP-luc

Catalog No. MRA-1217

For research use only. Not for use in humans.

Contribution:
Stefan H. I. Kappe, Ph.D., Professor, Seattle Biomedical Research Institute, Seattle, Washington, USA

Manufacturer:
BEI Resources

Product Description:
Protozoa Classification: *Plasmodiidae, Plasmodium*
Species: *Plasmodium falciparum*
Strain: NF54HT-GFP-luc

Original Source: *Plasmodium falciparum* (P. falciparum), strain NF54HT-GFP-luc is a recombinant clone produced in 2012 by single crossover integration of green fluorescent protein-luciferase (GFP-luc) in the NF54 (patient line E) strain (available as BEI Resources MRA-1000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country. The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000).

Comment: Strain NF54HT-GFP-luc expresses cytoplasmic GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country. The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country. The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country. The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country.

Note: The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country. The integrating plasmid could potentially be lost by reversion. Periodic selection of asexual blood stage parasites infected with NF54HT-GFP-luc with 5 nM GFP-luciferase in all life cycle stages. The complete genome of the parent strain, *P. falciparum* NF54, has been sequenced (GenBank: AMYQ00000000). The parent NF54 strain was isolated from a patient living in the Netherlands, who had never left the country.

Material Provided:
Each vial of MRA-1217 contains approximately 0.5 mL of *P. falciparum*-infected human blood in Glycerolyte 57 solution (1:5). Please see Appendix I for cryopreservation instructions.

Packaging/Storage:
MRA-1217 was packaged aseptically in cryovials. The product is provided frozen and should be stored at -80°C or colder immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze-thaw cycles should be avoided.

Growth Conditions:
RPMI 1640 medium, adjusted to contain 10% (v/v) heat-inactivated human serum type A, 25 mM HEPES, 2 mM L-glutamine

Human serum (pooled Type A or Type O recommended)

Please see Appendix II for complete medium preparation instructions and notes.

Incubation:
Temperature: 37°C
Atmosphere: 90% N₂, 5% CO₂, 5% O₂

Propagation:
1. Place the frozen vial in a 37°C water bath until the culture is completely thawed. Transfer the vial to a biological safety hood and wipe the outside surface of the vial with 70% ethanol.
2. Using a sterile 1 mL pipette, aseptically transfer the contents of the vial to a sterile 50 mL conical centrifuge tube.
3. Add 12% sodium chloride (NaCl) solution dropwise, approximately 1:5 ratio NaCl to cell mixture (0.2× original culture volume). Allow to stand for 5 minutes.
4. Using a 1 mL syringe and 27-gauge needle, add dropwise while shaking 10 volumes of a 1.6% NaCl solution (10:1 ratio NaCl to original culture volume).
5. Centrifuge at 1000 × g for 5 minutes and remove most of the supernatant, leaving approximately 0.5 mL to 1 mL to resuspend the cell pellet. Resuspend the cells by gently swirling the tube.
6. Add dropwise while shaking 10 volumes of complete medium. Centrifuge at 1000 × g for 5 minutes and carefully remove the supernatant.
7. Add 5 mL of complete medium and transfer the sample to a 25 cm² tissue culture flask.
8. For continuous culture, add uninfected red blood cells (RBCs) to a 1% to 2% hematocrit solution (immediately or the next day).
9. Gently aerate culture with a 95% air, 5% CO₂ gas mixture through a sterile, cotton-plugged Pasteur pipet. Incubate the flask at 37°C.
10. Take a smear for Giemsa staining after 24 hours to evaluate parasite growth and determine parasitemia.

Maintenance:
Note: Changing of the culture medium every 24 hours is required for malaria-infected erythrocyte cultures.
1. Remove the flask with infected culture from the 37°C incubator and place onto a flask warmer.
2. Carefully remove the supernatant with a sterile, unplugged Pasteur pipet under vacuum. Remove as much of the supernatant as possible without taking the cells.
3. Add 25 mL of sterile warm (37°C) complete medium to the flask, gently mix and aerate, then quickly tighten the cap and place the flask in the 37°C incubator until the next change of medium.

Preparation of Blood Smear:
1. Carefully remove 0.5 mL to 1 mL of mixed culture with a sterile pipet and transfer to a microcentrifuge tube.
2. Centrifuge the microcentrifuge tube at high speed and aspirate the supernatant.
3. Mix the pellet and transfer 6 µL of the suspension to a 25 cm² tissue culture flask. Spread the drop into a thin film using the edge of a clean glass slide. Air dry for 3 minutes at room temperature.
4. Fix the blood smear by rinsing it with methyl alcohol. Air dry for 3 minutes at room temperature.
5. Stain blood films in 10% Giemsa solution for 15 minutes. Rinse with distilled water and allow to air dry.
6. Using light microscopy at 100× magnification, determine parasitemia of culture.

BEI Resources
www.beiresources.org

E-mail: contact@beiresources.org
Tel: 800-359-7370
Fax: 703-365-2898

© 2018/2019/2021 American Type Culture Collection (ATCC). All rights reserved.
Citation:
Acknowledgment for publications should read “The following reagent was obtained through BEI Resources, NIAID, NIH: Plasmodium falciparum, Strain NF54HT-GFP-Luc, MRA-1217, contributed by Stefan H. I. Kappe.”

Biosafety Level: 2

All blood cultures should be handled with appropriate safety precautions necessary for the handling of bloodborne pathogens. Personnel must be trained in accordance with their institutional policy regarding bloodborne pathogens.

Disclaimers:
You are authorized to use this product for research use only. It is not intended for human use.

Use of this product is subject to the terms and conditions of the BEI Resources Material Transfer Agreement (MTA). The MTA is available on our Web site at www.beiresources.org.

While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, neither ATCC® nor the U.S. Government makes any warranties or representations as to its accuracy. Citations from scientific literature and patents are provided for informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been confirmed to be accurate.

This product is sent with the condition that you are responsible for its safe storage, handling, use and disposal. ATCC® and the U.S. Government are not liable for any damages or injuries arising from receipt and/or use of this product. While reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for damages arising from the misidentification or misrepresentation of products.

Use Restrictions:
This material is distributed for internal research, non-commercial purposes only. This material, its product or its derivatives may not be distributed to third parties. Except as performed under a U.S. Government contract, individuals contemplating commercial use of the material, its products or its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a license before first commercial sale.

References:

ATCC® is a trademark of the American Type Culture Collection.
APPENDIX I: CRYOPRESERVATION

Note: Only the immature parasite stage (rings) is viable by this method. We recommend a parasitemia of 3% or higher of ring-stage parasites for cryopreservation.

1. Centrifuge the culture at 1000 × g for 5 minutes.
2. Wash the pellet once with 10 or more volumes of incomplete RPMI 1640 medium. Centrifuge at 1800 × g for 5 minutes and leave sufficient supernatant to resuspend the pellet.
3. To the volume of packed red blood cells, slowly add dropwise one volume of cold (4°C) Glycerolyte 57 solution. Let stand for 5 minutes at room temperature.
4. Add dropwise an additional 3 volumes of cold Glycerolyte 57 solution to the pellet. Mix well and aliquot 0.5 mL into 1.5 mL sterile cryopreservation vials.
5. Place the vials in a controlled-rate freezing unit. From room temperature, cool the vials at -1°C per min to -40°C. If the freezing unit can compensate for the heat of fusion, maintain rate at -1°C per min through this phase. At -40°C, plunge vials into liquid nitrogen. Alternatively, place the vials in a Nalgene 1°C freezing container. Place the container at -80°C for 24 to 48 hours and then plunge vials into liquid nitrogen.
6. Store in either the vapor or liquid phase of a nitrogen refrigerator (-130°C or colder).

APPENDIX II: MEDIA PREPARATION

1. Incomplete Medium: used for many applications involving wash steps during preparation of parasites for culture or assay. The incomplete medium consists of RPMI 1640 medium supplemented with the following components1:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI 1640 medium</td>
<td>2,3</td>
</tr>
<tr>
<td>Sodium bicarbonate (NaHCO₃)</td>
<td>2.0 g per L</td>
</tr>
<tr>
<td>L-Glutamine</td>
<td>2 mM</td>
</tr>
<tr>
<td>HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]</td>
<td>25 mM</td>
</tr>
</tbody>
</table>

Optional:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>2.0 g per L</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>5 µg per L</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>2.5 mg per L</td>
</tr>
</tbody>
</table>

1Prepare sterile stock solutions at concentrations that are easily diluted into the liquid medium to obtain the appropriate user concentrations and add aseptically. Ready-made stock solutions for many of the components are available from numerous manufacturers.
2RPMI 1640 medium is available from numerous manufacturers as both a powder and a sterile, prepared liquid, with or without L-glutamine and HEPES. If using powdered RPMI 1640 medium, prepare the medium following manufacturer instructions, sterile-filter using a 0.22 µm filter, then aseptically add the necessary components in the appropriate concentrations.
3If stock solutions were not sterile or aseptic techniques were not followed, sterile-filter the medium using a 0.22 µm filter after the addition of all components. Store at 4°C.
4Prepared, liquid medium typically contains sodium bicarbonate while powdered medium does not. A typical concentration of sodium bicarbonate in RPMI 1640 medium is 2 g per L, though some formulations contain different amounts.
5A typical concentration of D-glucose in RPMI 1640 medium is 2 g per L. The option to supplement with an additional 2 g per L yields a final concentration of 4 g per L D-glucose.

2. Complete Medium: consists of incomplete medium (above) supplemented with 10% heat-inactivated human serum. If necessary, filter the complete medium with a 0.22 µm filter. Since serum tends to clog sterilizing filters, a serum pre-filter may be used first, followed by a 0.22 µm sterilizing filter.

Note: Human serum type A is used with washed type O blood. Serum substitutes may be used; however, they may not be acceptable for all parasite strains.